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Synchronous versus asynchronous updating in the ‘‘game of Life’’

Hendrik J. Blok* and Birger Bergersen†

Department of Physics and Astronomy, University of British Columbia, British Columbia, Canada V6T 1Z1
~Received 15 October 1998!

The rules for the ‘‘game of Life’’ are modified to allow for only a random fraction of sites to be updated in
each time step. Under variation of this fraction from the parallel updating limit down to the Poisson limit, a
critical phase transition is observed that explains why the game of Life appears to obey self-organized criti-
cality. The critical exponents are calculated and the static exponents appear to belong to the directed percola-
tion universality class in 211 dimensions. The dynamic exponents, however, are nonuniversal, as seen in other
systems with multiple absorbing states.@S1063-651X~99!13903-5#

PACS number~s!: 05.40.2a, 05.50.1q, 64.60.Fr, 64.60.Ht
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In mathematical modeling of complex, many-particle sy
tems the issue of updating arises. Typically the model se
to emulate the temporal evolution of some natural proce
either analytically or via simulation. In nature time is a co
tinuous variable but in mathematical models it is often m
convenient to discretize time. Computer simulations, in p
ticular, must discretize time because all numbers are re
sented by a fixed number of binary digits.

How time is discretized tends to depend on the sys
being modeled and the preferences of the modeler. Diffe
fields have adopted one of two techniques. Ecologists,
example, observe the natural periodicity in the population~s!
being studied and choose time steps on the same scale@1#.
Such a model for the number of individualsNi of speciesi
might look like

Ni ,t115m iNi ,tS 12
Ni ,t

Ki
D1(

j
M ~Ni ,t ,Nj ,t!,

where the indicesi and j range over the number of specie
being modeled, the first term represents some internal si
species dynamics for estimating the change in the popula
over one cycle, and the second term represents the effec
species interactions. Time is represented by the integert that
counts the number of cycles~such as years! that have passed
This type of updating is calledparallel or synchronousup-
dating. It is also commonly found in coupled map lattic
meant to describe intermittency in turbulent flow@2#.

In nature the probability that two events occur at exac
the same time has measure zero because time is infin
divisible. Some models take this into account by updat
each individual component of the model separately. Upd
times for all the elements are calculated and the element
the shortest time is updated first, and then the update ti
are recalculated as needed and the process repeated.
type of updating is calledasynchronousupdating. If all the
elements in a model can be updated at random times,
each has a known average rate then they are Poisson
cesses and the updating scheme is often called Poisson
dating. Other types of asynchronous updating methods
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clude sequential updating and combinations where so
elements are updated in a fixed sequence and others
domly.

The question naturally arises: Does it matter which ty
of updating is chosen? There is significant evidence tha
does matter indeed. Many different finite-differencin
schemes have been developed for numerical solutions to
tial value partial differential equations~PDE’s! in order to try
and avoid instabilities and spurious artifacts, introduced
discretization, not found in the original PDE’s@3#. Further,
maps~diffeomorphisms! often exhibit more complexity than
their equivalent PDE. Consider the logistic mapxi 11
5mxt(12xt), which exhibits a ‘‘period-doubling route to
chaos’’ asm increases from 3 to 4. The corresponding log
tic differential equation] tx5mx(12x)2x, on the other
hand, has only a single stable equilibrium [x50 for m,1,
andx5(m21)/m for m.1]. Indeed, the differential equa
tion does not exhibit the same complexity seen in the ma

Other illustrations of the significance of updating schem
can be found in Refs.@4–7#.

In this paper we explore the effects of synchronous a
asynchronous updating in one particular model based on
‘‘game of Life,’’ a cellular automaton~CA! invented by John
Horton Conway and made famous by Martin Gardner in
1970s~Gardner’s articles have been collected in@8#!.

The game of Life ~GL! is defined on a square two
dimensional lattice of sites which are eitheralive or dead.
The lattice is~traditionally! updated synchronously and th
rules governing the evolution vaguely mimic logistic dynam
ics: ~1! a live site will remain alive if exactly two or three o
its eight nearest neighbors are alive, otherwise it will die.~2!
If a dead site has exactly three live neighbors, it will
toggled to the live state~birth!. A random initial population
will evolve in a complex manner over time and will event
ally settle down to a steady-state configuration which is v
sensitive to small perturbations.

The game of Life has enjoyed renewed interest sinc
was proposed that it exhibits self-organized criticality~SOC!
@9,10#, a description of systems that naturally tend toward
critical state~lacking any natural length scales! without re-
quiring any tuning of external parameters. Recent evide
suggests GL is actually slightly subcritical@11–13#.

In this paper we consider the effects of relaxing the s
chronous updating requirement in GL. Instead of updating
3876 ©1999 The American Physical Society
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the sites in parallel, each site is updated with some proba
ity s. We label our new model SGL(s). If s51 we recover
the traditional GL@SGL(1)[GL#, but ass→10 the updat-
ing becomes Poisson. To keep the average rate of ev
uniform time is rescaled bys. All simulations were run on
square lattices with periodic boundaries from initially ra
dom, 50% occupied configurations.~Evidence indicates tha
periodic boundary conditions tend to minimize finite-size
fects@11,13#.! The final equilibrium state is very robust wit
respect to the initial density; simulations starting w
25% –99% initial occupation yielded indistinguishable fin
states. The time to equilibrate, however, does appear to
hibit a weak dependence on the initial density.

Two distinct phases are observed ass is varied: for large
s the system eventually decays to a low-density frozen st
The one exception iss51 which also allows simple periodi
structures to survive, but is identical in all other respects.
the other hand, for smalls the system converges~after an
initial transient! to a randomly fluctuating steady state.~Of
course, for finite simulations the system must always d
into the absorbed state eventually, but in simulation
steady state was stable for periods much longer than the
sient.! As s→10 the steady-state is characterized by d
mains of alternatingdeadand live stripes. Most of the activ-
ity in this case occurs at the domain boundaries. Typ
snapshots of the steady state for low and moderately his
values are given in Fig. 1. For some intermediates there is a
transition from one phase to the other.

We choose two typical order parameters to visualize
phase transition: the density of live sites and the activ
~fraction of updated sites which flip states!, both of which
exhibit distinct time evolutions for high and lows values.
The absorbed state~for larges) has no active sitesa50 and
a low densityr050.02660.001@slightly lower than SGL~1!
because of the lack of oscillators# while the fluctuating state
is characterized by a very active, high-density population

As s is varied the densityr of live sites ~neglecting the
transient! exhibits a distinct second-order~critical! phase
transition as demonstrated in Fig. 2. The critical pointsc and
critical power-law exponentb can be estimated via a non
linear Levenberg-Marquardt fit@3# of a power lawr2r0
}(sc2s)b wherer050.026 as calculated above. Notice th
in the Poisson limit (s→0) the steady-state density does n

FIG. 1. Sample steady-state configurations for two simulati
on a 64364 lattice with periodic boundaries. Ats50.10 ~left! a
dense state of live sites (d) organizing into regions of vertical an
horizontal stripes can be discerned. In contrast,s50.89~right!, just
below the critical point, shows a largely stationary backdrop
relatively low density, with isolatedavalanchesof high activity.
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approach the mean-field prediction ofr50.37 @14#.
Similarly, the steady-state activitya undergoes a critica

transition as shown in Fig. 3 from which the critical poi
and exponentb8 can again be estimated via a nonline
power-law fita}(sc2s)b8.

To eliminate finite-size effects a scaling analysis is
quired. Data were collected from nine runs on square latti
with sides ranging fromL532 toL5512. The critical point,
density exponent, and activity exponent were computed
above for these lattices and are plotted in Fig. 4, 5, and
These values appear to converge for the larger lattices
gesting boundary effects are minimized. It appears that in
thermodynamic limit the values converge tosc

(`)50.9060

60.0004,b (`)50.59560.004 ~density exponent!, andb8(`)

50.59560.006 ~activity exponent!. The error margins may
have been underestimated because only nine different la
sizes were used.

The compatibility of these exponents with directed perc

s

f

FIG. 2. The steady-state density of live sites clearly show
critical phase transitions as the fraction of sites updateds is varied.
A power-law fit ~dotted curve! near the transition reveals a critica
point sc50.908360.0010 and a critical exponentb50.617
60.011 for simulations on a 1283128 lattice with periodic bound-
aries.

FIG. 3. The steady-state activity, the fraction of updated s
that flip states in each time step, also shows a critical phase tra
tion as the fraction of sites updateds is varied. In this case the fitted
power law ~dotted curve! predicts sc50.908560.0015 andb8
50.59960.026 for simulations on a 1283128 lattice with periodic
boundaries. No activity is possible in the absorbed state~to the right
of the critical point! except whens51 ~GL!.
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lation ~DP! in 211 dimensions, b5b850.58660.014
@15,16#, leads us to hypothesize that SGL(sc) belongs to the
DP ~Reggeon field theory! universality class. This sugges
that many of the details, including the particular game
Life rules, are irrelevant near the critical point.

Up to this point we have only discussed the steady-s
behavior, neglecting the initial transient. But near a criti
point the transient should also reveal dynamical critical
havior. The probability that an avalanche survives for timt
near a critical point isPt5t2df„(s2sc)t

1/n i
…, whered is the

survival exponent,n i is the temporal correlation coefficien
andf is an unknown scaling function@17#.

To recover the dynamical exponents we require the p
of Ptt

d vs (s2sc)t
1/n i for different values ofs ~but a singleL

value! to collapse onto one another. A sample of the c
lapsed data forL591 is shown in Fig. 7.

The results of 400 experiments involvings50.92 ands
50.93 on lattice sizes ofL564, 91, and 128 using the pre
vious calculatedsc

(`)50.906 indicate exponentsd50.25
60.04 andn i50.9360.02. In contrast, the directed percol
tion exponents in 211 dimensions ared50.45160.003 and
n i51.29560.006 @17#. It is not surprising that these value
do not agree; evidence of such nonuniversality in the

FIG. 4. As the lattice dimensionL is scaled the critical point,
computed from both the density and activity analyses, conve
~dotted line! to sc

(`)50.906060.0004 for simulations on square la
tices with periodic boundaries. The data points have been sh
slightly in the plot to improve readability.

FIG. 5. As the lattice dimensionL is scaled the density exponen
converges~dotted line! to b (`)50.59560.004 for simulations on
square lattices with periodic boundaries.
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namical exponents has been observed in other critical be
ior. The key ingredient for this to occur appears to be
possibility of the system settling into one of many possib
absorbing states@16#.

In summary, we modified the rules for the game of Li
~GL! to allow for only a random fractions of sites to be
updated in each time step. Ass was decreased from GL
(s51) a critical transition was observed that explains w
GL appears to obey self-organized criticality~SOC!—in fact
it is just close to a traditional dynamical critical point atsc
'0.906.

The distinct behavior of high- and low-s simulations un-
derscores the importance of choosing a relevant upda
scheme. Often, either parallel or Poisson updating is cho
for convenience, but to avoid spurious artifacts the mode
should explore alternate schemes where possible.

Some SOC models can be directly mapped onto ordin
critical models with an explicit control parameter. In som
cases, such as the sand-pile model, the control paramet
the driving rate, which is reduced to zero@18#. In other cases
variation of the conservation law moves the system betw
subcritical and supercritical regimes@19#. Our results indi-

es

d

FIG. 6. As the lattice dimensionL is scaled the activity expo-

nent converges~dotted line! to b8(`)50.59560.006 for simulations
on square lattices with periodic boundaries.

FIG. 7. By tuning the exponentsd and n i the plots ofPtt
d vs

(s2sc)t
1/n i for different values ofs can be overlapped, yielding th

critical exponents~wherePt is the probability of a disturbance sur
viving for t iterations!. This plot represents the collapsed plots f
L591 usingsc50.906. The tails of the distributions (Ptt

d small!
are subject to excessive noise and are neglected in the fit.
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cate that GL falls into this subset of SOC: GL’s inclusion
the SOC paradigm results from an accidental choice of
control parameter~synchronicity! at a value near the critica
point.

The compatibility of the critical exponents suggests t
GL belongs to the directed percolation universality class
211 dimensions as was first suggested by Paczuski, Mas
and Bak@20#. Nordfalk and Alstro”m @12# also observed com
patibility for different ~temporal! exponents. This behavio
should not be too surprising because the spread of a pe
bation in a nearly stable configuration looks qualitative
very much like a directed percolation cluster.

Our own exploration of the dynamical behavior unco
ce
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ered some surprising results: namely, that the dynamic c
cal exponents do not fall into the directed percolation univ
sality class. Our model exhibits a characteristic property
nonuniversal critical behavior, the existence of multiple a
sorbing states. Further research in this area is require
explain both the nature of the phase transition and the in
esting behavior of GL under Poisson updating.
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